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Equation of State of He-H2 and He-D2 Dense Fluid
Mixtures at High Pressures and Temperatures
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The fluid variational theory is used to calculate the Hugoniot equation of
state (EOS) of He, D2, He + H2, and He + D2 fluid mixtures with different
He:H2 and He:D2 compositions at high pressures and temperatures. He, H2,
and D2 are the lightest elements. Therefore, the quantum effect is included
via a first-order quantum correction in the framework of the Wigner-Kirk-
wood expansion. An examination of the reliability of the above computations
is performed by comparing experiments and calculations, in which the cal-
culation procedure used for He and D2 is adopted also for He + D2 and
He + H2, since no experimental data for the mixtures are available to con-
duct these comparisons. Good agreement in both comparisons is found. This
result may be seen as an indirect verification of the calculation procedures
used here, at least, in the pressure and temperature domains covered by the
experimental data for He and D2 used for comparisons, which is nearly up
to 40 GPa and 105 K. Also, the equation of state of He + H2 fluid mixtures
with different compositions is predicted over a wide range of temperatures
and pressures.

KEY WORDS: deuterium; equation of state; fluid variational theory; helium;
hydrogen; mixtures.

1. INTRODUCTION

Hydrogen and helium are the simplest and most abundant elements in
the universe and also major constituents of some planets, such as Jupiter
and Saturn. Yet at high pressures, they are some of the most difficult to
understand. From low to moderately high pressures, hydrogen is a molec-
ular fluid (or solid) with a wide bandgap [1,2]. The high-pressure equation
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of state of hydrogen and its isotopes is a subject of considerable interest,
principally due to the importance of the EOS to such areas as inertial con-
finement fusion, planetary astrophysics, and a fundamental understanding
of warm dense matter. In the past several years, some significant advances
have been made in the experimental and theoretical Hugoniot equation
of state of liquid deuterium and helium [3–9]. He–H2 mixtures enjoy spe-
cial significance due to their cosmological relevance and the challenge they
pose due to the complex nature of interactions among the constituent
species.

Recently, Ali et al. [10] have studied the effect of pressure and temper-
ature on the properties of mixing of helium-hydrogen fluid mixtures based
on statistical perturbation theory. The constituent species are considered
to be interacting by a pair potential consisting of a short-range repulsion
and a long-range attraction which is included through a double Yukawa
(DY) potential. Studies involving these mixtures are relatively rare both
theoretically and experimentally. In spite of the simple electronic structure
of helium and deuterium, it is difficult to make a precise description of
the properties of helium and deuterium at high pressures and tempera-
tures, but it can only be made with the help of some approximate models.
Although variational free energy calculations have been done for over 30
years, there is still an interest to carry out such calculations.

In some of our previous studies on shock-compressed liquid H2 + D2
and fluid He + H2, Chen et al. [11,12] reported the calculation results
of an EOS by the use of a one-component variational fluid theory with
a quantum correction, and the theoretical results are in excellent agree-
ment with the existing experimental data. Therefore, in this work, we have
applied the two-component variational fluid theory method to He + D2
and He + H2 fluid mixtures. The interactions of the mixture species were
described by using the effective pair potential of the exponential-six form.
The equation of state of the He + H2 fluid mixtures with different compo-
sitions is predicted over a wide range of temperatures and pressures.

2. FREE ENERGY MODEL

Based on the fluid variational theory model [13], the free energy is
given as a sum of the ideal contributions of the pure components F id

i

(with i = 1,2,1 = He,2 = D2) and a term for the correlations among all
particles F cor

i . The thermophysical properties of the mixtures for deute-
rium and helium are calculated using the following Helmholtz free energy
for a system of ND2 molecules and NHe atoms:

F tot =F id
He +F id

D2
+F cor

He−D2
+FQM. (1)
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The ideal free energies for the atomic and molecular components are given
by

F id
He(n, T )=F trans

He (N,T ), (2)

F id
D2

(n, T )=F trans
D2

(N,T )+F rot
D2

(N,T )+F vib
D2

(N,T )−D0. (3)

Here D0 = 4.478 eV is the dissociation energy of isolated deuterium mol-
ecules and T and n are the temperature and particle number density,
respectively. The translational degrees of freedom for each component can
be integrated and yield

F trans
i (n, T )=NikBT ln(�2

i ni), (4)

where Λi =h /
√

2πmikBT is the thermal wavelength and ni =Ni/V is the
particle number density. The rotational and vibrational states of the D2
molecule can be integrated and give [14]

F rot
D2

(N,T )=ND2 kBT

[
ln

(
Tr

T

)
− Tr

3T
− 1

90

(
Tr

2T

)2
]

, (5)

F vib
D2

(N,T )=ND2 kBT

[
ln(1− exp(−Tv/T ))+ Tv

2T

]
. (6)

The rotational temperature of the D2 molecule is Tr = 43 K. The vibra-
tional temperature of the D2 molecule is Tv =4395 K.

The correlation parts are determined variationally by using free
energy minimization. In particular, in our case with a hard-sphere (HS)
reference system we can obtain

F cor
He−D2

≈ min
d1,d2

{FHS(T , x1, x2, η1, η2)+FHeHe(NHe, ηHe)

+FHeD2(NHe,ND2 , η1, η2)+FD2D2(ND2 , η2)}, (7)

where ηi =πd3
i ni/6 (d =hard-sphere diameter). The expression for the free

energy of a binary HS reference system is given by [15]

FHS(n, T , η1, η2) = NkBT

[
3
2
(1−y1 +y2 +y3)+ 3y2 +2y3

1−η

+3
2

1−y1 −y2 −y3/3
(1−η)2

+ (y3 −1)ln(1−η)

]
, (8)
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where

η = η1 +η2,

y1 = (η∗
1 +η∗

2 −η12 −η21)/η,

y2 = [η1η2 +η21(η1 −2η2)+η12(η2 −2η1)]/η
2,

y3 = [(x1η
2
1)

1/3 + (x2η
2
2)

1/3]3/η2,

η12 = (η∗
1η∗2

2 )1/3, η21 = (η∗
2η∗2

1 )1/3,

η∗
1 = x1η1, η∗

2 =x2η2,

x1 = NHe/N, x2 =ND2/N.

The correlation contributions Fij are given by integrals over the pair
potentials φij(r) and the respective radial distribution function gij(r, η)
which are approximated by the Percus-Yevick equation of a hard-sphere
reference system, e.g.,

Fij =2πNn

∫ ∞

d

r2φij (r)gij (r, η)dr. (9)

The pair distribution functions of the hard-sphere reference system use the
Percus-Yevick analytical expression [16],

g(r, η)= 1
24πηri

∫ δ+i∞

δ−i∞
tL(t)ertdt

[L(t)+S(t)et ]
, (10)

where

S(t)= (1−η)2t3 +6η(1−η)t2 +18η2t −12η(1+2η),

L(t)=12η

[(
1+ 1

2
η

)
t + (1+2η)

]
.

The integrals in Eq. (10) can thus be evaluated by means of the residue
theorem. FQM is a first-order quantum correction to the Wigner-Kirkwood
expansion [17]:

FQM = βh2nN

24πm∗

∫ ∞

d

gij (r, η)∇2φij (r)r
2dr, (11)

where m∗ is the effective mass. The expression for this effective mass m∗
is [18]

1
m∗ =

∑
i,j

1
mi

xixj εij r
∗
ij / εr∗. (12)
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The parameters (ε, r∗) are expressed in terms of the exp-6 parameters
(εij, r∗

ij ) of constituent species of the mixture system [12], and xi denotes
the mole fraction of species i. Here F cor is calculated by adjusting di until
F cor attains a minimum, and we take this F cor minimum as the value of
F cor. Then the pressure (P ) and the internal energy (E) of the system may
be calculated by

p =−∂F tot

∂V
= 1

N
ρ2 ∂F tot

∂ρ
, (13)

E = ∂(βF tot)

∂β
=−T 2 ∂

∂T

(
F tot

T

)
. (14)

To verify the reliability of the theoretical high-pressure and high-tempera-
ture EOS, we think that it is better to conduct experiments under shock
compression conditions, because experimental data are generally easy to
obtain in that case. Hugoniot calculations could be made by the above
equations combined with the Rankine-Hugoniot relation [19],

EH −E0 = 1
2
(PH +P0)(V0 −VH), (15)

which connects a thermodynamic state (PH,EH, VH) achieved behind the
shock front with the initial state (P0,E0, V0) ahead of the shock front.
The initial states (P0,E0, V0) of He and D2 are taken as (10−4 GPa,
0.1 kJ·mol−1, 32.4 cm3· mol−1) [20] and (10−4 GPa, 0.1146 kJ· mol−1, 23.64
cm3· mol−1) [14], respectively. The values of P0,E0, and V0 may be com-
puted from the mole fractions of the mixture components by using the
following forms:

E(p) =
∑

i

ciEi(p), (16)

V (p) =
∑

i

ciVi(p). (17)

Here ci is the mass fraction of the ith component, and
∑

i ci =1.
Fluid mixtures are of great practical importance but theoretical calcu-

lations for them are generally much harder than for single species. Thus,
the correlation free energy F cor is calculated by using the effective pair
potential. The potential used in Eq. (9) to calculate F cor is taken as the
exponential-six form,

φ(r)= ε

α −6

{
6 exp

[
α

(
1− r

r∗
)]

−α

(
r∗

r

)6
}

. (18)
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Table I. Parameters for the Effective Potentials for the D2-D2, He-He, and
He-D2 Systems Used in the Present Work [22].

Parameter D2-D2 He-D2 He-He

α 11.1 12.7 13.10
ε/kB (K) 36.4 15.5 10.800
r∗ (nm) 0.343 0.337 0.29673
ra (nm) 0.145855 0.104748 0.085548
A (K) 313369 852692 939318
B (nm−1) 0.224478 0.261272 0.307828

The parameter ε represents the attractive well depth, r∗ indicates the range
of interaction, while parameter α regulates the stiffness of repulsion. The
long-range attractive part is similar to the Lennard-Jones potential, while
the repulsion at shorter distances is modeled by an exponential func-
tion. In the limit r → 0, the exp-6 potential, Eq. (18), becomes attractive
again. This unphysical behavior is avoided by replacing the exp-6 poten-
tial, Eq. (18), by an exponential function of form φij(r) = φ2(r) = A exp
(-Br) for r�ra such that repulsion remains for small distances. Here ra is
one of the two inflection points of Eq. (18) and smaller than the equilib-
rium distance. The parameters A and B are chosen to ensure continuity,
i.e., φ1(ra)=φ2(ra) and φ′

1(ra)=φ′
2(ra), and are given in Table I together

with the values for ε, r∗, and α of Eq. (18).

3. RESULTS AND DISCUSSION

The calculated Hugoniots for fluid He, D2, and He + D2 mixtures
with He:D2=5:1, 3:1, 1:1, and 1:3 are shown in Figs. 1 and 2, separately
in PH − VH and TH − VH planes. Because there are no experimental data
for He + D2 mixtures that verify the reliability of calculations directly,
we have no choice but to make comparisons for He and D2 between
experiment and calculations that use similar procedures as carried out for
He + D2 mixtures. So the data for He and D2 are given in Figs. 1 and
2. Rather good agreement between experiment and calculations [6,19–21]
is shown in these two figures. We think these comparisons may be seen
as indirect verification of the reliability of the calculation procedure used
here. Both figures also demonstrate that the Hugoniots of fluid He, D2,
and their mixtures tend to coincide when VH approaches its initial state,
but deviate from each other more and more with increasing compression.
Also, at a given V the values of PH and TH will decrease with decreasing
mole fraction of He and approach to values of one-component D2 when
the mole fraction ratio of He: D2 falls to 1:3 or lower.
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Fig. 1. Comparison of PH − VH curves for fluid He, D2, and He + D2

mixtures

Fig. 2. Comparison of TH − VH curves for fluid He, D2, and He + D2

mixtures
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As is well known, the difference between isotopes is simply related to
the neutron number in each nucleus, but on the hand, there are the same
number of electrons around each nucleus which plays an important role in
determining the chemical properties of the substance. Therefore, when the
inter-particle distance is the same, the interaction and thermal excitation
of electrons will be also in both He–H2 and D2-He systems. The param-
eters used for the calculation of He–H2 mixtures should be also the same
as that of He–D2 mixtures listed in Table I. But the rotational and vibra-
tional temperatures for H2 and D2 molecules are different, Tr = 85 K and
Tv = 6210 K for H2. Figure 3 shows a comparison of isotherms of fluid
helium and hydrogen with the Monto-Carlo (MC) simulations [13], calcu-
lations of Ali et al. [10], and the effective one-component model [12]. The
present results are in agreement with the MC data and the effective one-
component model. Note that the results of Ali et al. are slightly higher
than our calculations. The deviations from the pressures by Ali et al. have
a tendency to increase with density. This indicates that the DY potential
used in their calculations is stiffer than the present potential. The reason is
that the many-particle nature of the interaction might not be well approx-
imated by the DY potentials in the higher density region.

Fig. 3. Comparison of the isotherms of helium and hydrogen fluid mixtures
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Fig. 4. Isothermal surfaces of mixtures of fluid helium and hydrogen as a
function of specific volume and mole fraction of He.

Another effect, the pressure dissociation of hydrogen, should occur
under these conditions as well. Therefore, the short-range parts of the
effective pair potentials become more and more important for very high
densities. The present calculation method is also extended to calculate
the isothermal surface for He + H2 fluid mixtures over a wide range of
pressure with different compositions. Figure 4 shows the predicted iso-
thermal surface of the helium and hydrogen fluid mixtures with different
He:H2 compositions at 6000 K. It can be seen that pressures decrease with
increasing mole fraction of helium at isothermal conditions. The pressure
of the He + H2 fluid mixtures increases with increasing temperature. Based
on the calculation procedures and results, the difference in the equation of
state between He–D2 and He–H2 fluid mixtures is mainly reflected in the
quantum effect due to different masses of H2 and D2. It leads to a differ-
ence in both vibration and rotation temperatures for H2 and D2. There-
fore, He–H2 shows the more sensitive quantum effect for volume change
than He–D2. The validity of the present predictions needs to be verified
by comparisons with experimental data.

4. CONCLUSIONS

The experimental high-pressure data of deuterium and helium are
reproduced by the fluid variational theory with a pure molecular (or a
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pure atom) fluid up to 40 GPa. The EOS for He+H2 fluid mixtures is in
good agreement with MC data and the effective one-component model.
The predicted EOSs for the two-component fluid mixtures are extended
to pressures up to 100 GPa and temperatures up to 10 kK. However, the
many-particle nature of the interactions might not be well approximated
by these effective pair potentials at high pressures. Another effect, the
pressure dissociation of hydrogen molecules, should occur under these
conditions as well. Therefore, the calculated model is restricted to pres-
sures below 100 GPa. The reliability of the calculation procedure proposed
in this paper should be clarified through direct comparisons with exper-
imental data for He + D2 and He + H2 mixtures in the future. The pres-
ent results help to guide the importance for developing shock-compression
experiments.
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